For help with these problems www.tutor-homework.com
 Be sure to mention the filename:
 Chemistry_Questions_0108

www.tutor-homework.com (for tutoring, homework help, or help with online classes)
1.

At equilibrium, \qquad .

Student Response

1. all chemical reactions have ceased
2. the rates of the forward and reverse reactions are equal
3. the rate constants of the forward and reverse reactions are equal
4. the value of the equilibrium constant is 1
5. the limiting reagent has been consumed
6.

A flask is initially charged with 0.2 atm of pure NO_{2}, which then reacts to form $\mathrm{N}_{2} \mathrm{O}_{4}$ according to the equilibrium:

$$
2 \mathrm{NO}_{2} \leftrightarrow \mathrm{~N}_{2} \mathrm{O}_{4}
$$

At what point does the conversion of NO_{2} to $\mathrm{N}_{2} \mathrm{O}_{4}$ stop?
3.

For the following reaction, the rate coefficients are:
$\mathrm{k}_{1}=5.82^{\prime} 10^{-21} \mathrm{~s}^{-1}$
$\mathrm{k}_{-1}=8.19^{\prime} 10^{15} \mathrm{M}^{-2} \mathrm{~s}^{-1}$
The equilibrium constant for this reaction is $\mathrm{K}=$ \qquad M^{-2}

4-7 EQUILBRIUM CONSTANT

4.

If the equilibrium constant for the reaction

$$
6 A+6 B \leftrightarrow 6 A B
$$

is 444 , what is the equilibrium constant for the reaction

$$
2 A B \leftrightarrow 2 A+2 B
$$

5.

At some temperature, the following reactions have the equilibrium constants shown:
$\mathrm{NO}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{NO}(\mathrm{g})+\mathrm{O}(\mathrm{g})$
$K=1.44 \times 10^{23}$
$\mathrm{O}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g}) \leftrightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

$$
K=2.61 \times 10^{-5}
$$

What is the equilibrium constant for the reaction

$$
\mathrm{O}_{2}+\mathrm{O} \leftrightarrow \mathrm{O}_{3}
$$

6.

Consider the generic reaction:

$$
4 A+2 B \leftrightarrow 2 C+3 D
$$

If the equilibrium constant in terms of pressures is $\mathrm{K}_{\mathrm{p}}=157$ at $19^{\circ} \mathrm{C}$, what is the value of equilibrium constant in terms of concentrations, K_{c}. [Assume pressures are in atmosphere and concentrations are in moles/liter, $R=0.08206$ atm/M-K.]
7.

Consider the following equilibrium:

$$
4 A+5 B \leftrightarrow 3 C+2 D
$$

If the equilibrium pressures are $\mathrm{P}_{\mathrm{A}}=4.69 \mathrm{~atm}, \mathrm{P}_{\mathrm{B}}=2.53 \mathrm{~atm}, \mathrm{P}_{\mathrm{C}}=1.24 \mathrm{~atm}$, and $\mathrm{P}_{\mathrm{D}}=2.34 \mathrm{~atm}$, what is Kp

8-12 REACTION QUOTIENT

8.

For each of the following systems at equilibrium and at constant temperature indicate whether increasing the volume would cause the reaction to shift towards reactants, towards products, or have no effect.

$$
\begin{aligned}
& \text { Statement } \\
& \begin{array}{l}
\mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \\
\mathrm{COCl}_{2}(g) \rightleftharpoons \mathrm{gO}(g)+\mathrm{Cl}_{2}(g) \\
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HCl}(\mathrm{~g}) \\
\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}^{2}(\mathrm{~g})
\end{array}
\end{aligned}
$$

9.

The following equilibrium:

$$
\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

is endothermic ($\Delta \mathrm{H}=67 \mathrm{~kJ}$). What change (if any) in each of the following parmeters would result in an increase yield of products.

Statement

Pressure
Temperature
10.

The reaction below is exothermic:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Le Châtelier's Principle predicts that \qquad will result in an increase in the number of moles of $\mathrm{SO}_{3}(\mathrm{~g})$ in the reaction container.

Student Response

1. increasing the pressure
2. decreasing the pressure
3. increasing the temperature
4. removing some oxygen
5.

For the reaction ${ }^{P C l} l_{S}(g) \rightleftharpoons \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(\mathrm{~g}), \mathrm{Kc}=0.0454$ at $261^{\circ} \mathrm{C}$. If a vessel is filled with these gases such that the initial concentrations are $\left[\mathrm{PCl}_{5}\right]=0.25 \mathrm{M},\left[\mathrm{PCl}_{3}\right]=0.20$ M , and $\left[\mathrm{Cl}_{2}\right]=2.25 \mathrm{M}$, in which direction will a reaction occur and why?

Student Response

a. toward products because $Q=0.56$
b. toward reactants because $Q=1.8$
c. toward products because $Q=2.8$
d. toward reactants because $Q=0.0454$
e. it is at equilibrium
12.

A reaction flask is charged with 2.9 atm of A_{2} and 4.1 atm of $\mathrm{A}_{2} \mathrm{~B}$. When equilibrium occurs via:

$$
2 \mathrm{~A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{~A}_{2} \mathrm{~B}(\mathrm{~g}),
$$

the equilibrium partial pressure of B_{2} is 0.2 atm. Determine K_{p}.

13-14 HETERO EQUILIBRIUM

13.

A solution of NaF is added dropwise to a solution that is 0.0144 M in Ba^{2+}. When the concentration of F^{-}exceeds \qquad $\mathrm{M}, \mathrm{BaF}_{2}$ will precipitate. Neglect volume changes. For BaF_{2},

Student Response

1. 5.9×10^{-5}
2. 1.1×10^{-2}
3. 2.4×10^{-8}
4. 2.7×10^{-3}
5. 1.2×10^{-4}
6.

The hypothetical solid $\mathrm{A}_{4} \mathrm{~B}_{2}$ decomposes according to:

$$
2 \mathrm{~A}_{4} \mathrm{~B}_{2}(\mathrm{~s}) \leftrightarrow 4 \mathrm{~A}_{2}(\mathrm{~g})+2 \mathrm{~B}_{2}(\mathrm{~g})
$$

If the equilibrium constant is $523.1 \mathrm{~atm}(4+2)$ at 159 K , what is the total pressure at equilibrium, if $30.5-\mathrm{g}$ of $\mathrm{A}_{4} \mathrm{~B}_{2}$ is placed in a $12-\mathrm{L}$ vessel and decomposed at this temperature?

15-17 THERMODYNAMICS

15.

Is it possible for a reaction to be endothermic but at the same time be spontaneous. Conversly is it possible for a reaction to be exothermic yet nonspontaneous? Explain.
16.

Calculate the standard free energy change, and determine whether or not hematite spontaneously converts to magnetite under standard conditions. $3 \mathrm{Fe}_{2} \mathrm{O}_{3}(s)$ (hematite)

$$
\begin{aligned}
& 2 \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})(\text { magnetite })+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) ; \quad \mathrm{G}_{\mathrm{f}} \quad \text { (hematite) }=-742.2 \mathrm{~kJ} / \mathrm{mol} ; \\
& \mathrm{G}_{\mathrm{f}} \quad(\text { magnetite })=-1015 \mathrm{~kJ} / \mathrm{mol} .
\end{aligned}
$$

Student Response

a. $G=-272.8 \mathrm{~kJ}$; spontaneous
b. $G=272.8 \mathrm{~kJ}$; not spontaneous
c. $G=469.4 \mathrm{~kJ}$; spontaneous
d. $G=196.6 \mathrm{~kJ}$; not spontaneous
e. $G=-196.6 \mathrm{~kJ}$; spontaneous
17.

For the hypothetical reaction $A_{2}+B_{2} \rightarrow 2 A B$
$\Delta \mathrm{H}^{\circ}=68.3 \mathrm{~kJ} / \mathrm{mol}$, and $\Delta \mathrm{S}^{\circ}=123.9 \mathrm{~J} /(\mathrm{mol}-\mathrm{K})$. What is $\Delta \mathrm{G}^{\circ}$ for this reaction at 215 K ?

18-20 THERMODYNAMIC EQUILIBRIUM

18.

At $1,720 \mathrm{~K}$, the equilibrium contant for a given reaction is $\mathrm{K}=0.0918$. What is the free energy for this reaction in $\mathrm{kJ} / \mathrm{mol}$?
19.

For a certain equilibrium process, the equilibrium constant is 9.45×10^{-5} at 105 K , and 4.03×10^{11} at 536 K. What is $\Delta \mathrm{H}^{\circ}$ (in $\mathrm{kJ} / \mathrm{mol}$) for this reaction?
20.

A certain equilibrium reaction has an equilibrium constant of $K=5.51$ at a temperature of 360 K . If the reaction quotient is 7.20 what is $\Delta \mathrm{G}$ (in $\mathrm{kJ} / \mathrm{mol}$)?

