For help with these problems

www.tutor-homework.com

Be sure to mention the filename: Chemistry_Questions_0096
www.tutor-homework.com (for tutoring, homework help, or help with online classes)

1. chem10b 16.1-27

The pH of a 0.10 M solution of a weak base is 9.82 . What is the K_{b} for this base?

Student Response

Correct Answer
A. 8.8×10^{-8}
B. 2.1×10^{-4}
C. 6.6×10^{-4}
D. 2.0×10^{-5}
E. 4.3×10^{-8}
2. chem10b 16.1-1

What is the conjugate acid of NH_{3} ?

Student Response

A. $\mathrm{NH}_{4}{ }^{+}$
B. $\mathrm{NH}_{2}{ }^{+}$
C. NH_{3}
D. $\mathrm{NH}_{4} \mathrm{OH}$
E. $\mathrm{NH}_{3}{ }^{+}$
3. chem10b 16.4-3

The simplest amino acid is glycine.
4. chem10b 16.2-27

Using the data in the table, which of the conjugate bases below is the strongest base?

Student Response

A. ClO^{-}
B. F^{-}
C. CHO_{2}
D. OAC^{-}
E. OAc and CHO_{2}^{-}

5. chem10b 16.1-18

A 0.15 M aqueous solution of the weak acid HA at $25.0^{\circ} \mathrm{C}$ has a pH of 5.35 . The value of K_{a} for HA is \qquad _.

Student Response

A. 1.8×10^{-5}
B. 1.4×10^{-10}
C. 3.3×10^{4}
D. 3.0×10^{-5}
E. 7.1×10^{-9}
6. chem10b 16.1-35

Calculate the pOH of a 0.0827 M aqueous sodium cyanide solution at $25.0^{\circ} \mathrm{C} . \mathrm{K}_{\mathrm{b}}$ for CN^{-}is 49×12.10.

Student Response

A. 8.8
B. 10
C. 5.2
D. 9.3
E. 1.1
7. chem10b 16.1-4

What is the conjugate base of OH^{-}?

Student Response

A. $\mathrm{H}_{3} \mathrm{O}^{+}$
B. $\mathrm{H}_{2} \mathrm{O}$
C. O_{2}
D. O^{-}
E. O^{2-}
8. chem10b 16.1-29

Determine the pH of a 0.35 M aqueous solution of $\mathrm{CH}_{3} \mathrm{NH}_{2}$ (methylamine). The K_{b} of methylamine is 4.4×10^{-4}.

Student Response

A. 1.9
B. 10
C. 13
D. 12
E. 3.8

9. chem10b 16.5-7

The acid-dissociation constant of hydrocyanic acid (HCN) at $25.0^{\circ} \mathrm{C}$ is 4.9×10^{-10}. What is the pH of an aqueous solution of 0.080 M sodium cyanide (NaCN)?

Student Response

Correct Answer
A. 1.3×10^{-3}
B. 11.11
C. 7.8×10^{-12}
D. 2.89
E. 3.9×10^{-11}
10. chem10b 16.1-42

The pH of a 0.15 M aqueous solution of NaZ (the sodium salt of HZ) is 10.7 . What is the K_{a} for HZ?

Student Response

 Correct AnswerA. 3.3×10^{-8}
B. 1.6×10^{-6}
C. 8.9×10^{-4}
D. 6.0×10^{-9}
E. 1.3×10^{-12}

11. chem10b 16.1-26

The acid-dissociation constant for chlorous acid, HClO_{2}, at $25.0^{\circ} \mathrm{C}$ is 1.0×10^{-2}. Calculate the concentration of H^{+}if the initial concentration of acid is 0.10 M .

Student Response

Correct Answer
A. 2.7×10^{-2}
B. 3.7×10^{-2}
C. 3.2×10^{-2}
D. 1.0×10^{-2}
E. 1.0×10^{-3}
12. chem10b 16.1-36

Determine the pH of a 0.15 M aqueous solution of KF. For hydrofluoric acid,
A. 8.2
B. 2.3
C. 5.8
D. 12
E. 6.6
13. chem10b 16.1-13

What is the pH of a 0.0150 M aqueous solution of barium hydroxide?

Student Response

A. 12.2
B. 1.52
C. 12.5
D. 10.4
E. 1.82
14. chem10b 16.1-8

What is the pH of an aqueous solution at $25.0^{\circ} \mathrm{C}$ that contains $3.98 \times 10^{-9} \mathrm{M}$ hydroxide ion?

Student Response

Correct Answer
A. 9.00
B. 8.40
C. 5.60
D. 3.98
E. 7.00
15. chem10b 16.1-2

The conjugate base of $\mathrm{HSO}_{4}{ }^{-}$is
A. HSO_{4}^{+}
B. $\mathrm{H}_{3} \mathrm{SO}_{4}{ }^{+}$
C. OH^{-}
D. $\mathrm{SO}_{4}{ }^{2-}$
E. $\mathrm{H}_{2} \mathrm{SO}_{4}$
16. chem10b 16.2-28

Which of the following ions will act as a weak base in water?

Student Response

A. Cl^{-}
B. NO_{3}
C. OH^{-}
D. ClO^{-}
E. None of the above will act as a weak base in water.
17. chem10b 16.2-34

A 0.1 M solution of \qquad has a pH of 7.0.

Student Response

Correct Answer
A. NaNO_{3}
B. KF
C. $\mathrm{Na}_{2} \mathrm{~S}$
D. NaF
E. $\mathrm{NH}_{4} \mathrm{Cl}$
18. chem10b 16.1-11

Calculate the pOH of a solution at $25.0^{\circ} \mathrm{C}$ that contains $1.94 \times 10^{-10} \mathrm{M}$ hydronium ions.
A. 1.94
B. 4.29
C. 14.0
D. 7.00
E. 9.71
19. chem10b 16.2-8

The concentration of water in pure water is approximately \qquad M.

Student Response

A. 18
B. 55
C. 83
D. 0.100
E. 100
20. chem10b 16.2-9

In basic solution, \qquad -.

Student Response

Correct Answer
A. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$
B. $\left[\mathrm{OH}^{-}\right]>7.00$
C. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0 \mathrm{M}$
D. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
E. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$

1. chem10b 16.2-34

A 0.1 M solution of \qquad has a pH of 7.0.
A. $\mathrm{NH}_{4} \mathrm{Cl}$
B. $\mathrm{Na}_{2} \mathrm{~S}$
C. NaF
D. NaNO_{3}
E. KF

Score: 1/1
2. chem10b 16.5-5

The acid-dissociation constant at $25.0^{\circ} \mathrm{C}$ for hypochlorous acid (HClO) is 3.0×10^{-8}. At equilibrium, the molarity of $\mathrm{H}_{3} \mathrm{O}^{+}$in a 0.010 M solution of HClO is \qquad .

Student Response

 Correct AnswerA. 5.8×10^{-10}
B. 4.76
C. 2.00
D. 0.010
E. 1.7×10^{-5}

Score: 1/1
3. chem10b 16.2-9

In basic solution, \qquad .

Student Response

Correct Answer
A. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
B. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$
C. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0 \mathrm{M}$
D. $\left[\mathrm{OH}^{-}\right]>7.00$
E. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
4. chem10b 16.1-33

The K_{a} for HCN is 4.9×10^{-10}. What is the value of K_{b} for CN^{-}?
A. 4.0×10^{-6}
B. 2.0×10^{9}
C. 4.9×10^{4}
D. 4.9×10^{-24}
E. 2.0×10^{-5}
5. chem10b 16.2-13

An aqueous solution contains 0.10 M NaOH . The solution is \qquad -.

Student Response

Correct Answer

A. very dilute
B. acidic
C. highly colored
D. basic
E. neutral
6. chem10b 16.1-37

Calculate the pH of 0.726 M anilinium hydrochloride $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{Cl}\right)$ solution in water, given that K_{b} for aniline is 3.83×10^{-4}.

Student Response

Correct Answer
A. 12.2
B. 5.36
C. 8.64
D. 12.4
E. 1.77
7. chem10b 16.1-16

HZ is a weak acid. An aqueous solution of HZ is prepared by dissolving 0.020 mol of HZ in sufficient water to yield 1.0 L of solution. The pH of the solution was 4.93 at $25.0^{\circ} \mathrm{C}$. The K_{a} of HZ is \qquad —.
A. 2.8×10^{-12}
B. 9.9×10^{-2}
C. 1.4×10^{-10}
D. 6.9×10^{-9}
E. 1.2×10^{-5}
8. chem10b 16.2-23

Classify the following compounds as weak acids (W) or strong acids (S):
hypochlorous acid perchloric acid chloric acid

Student Response

Correct Answer
A. W S S
B. W W W
C. W S W
D. $\mathrm{S} S \mathrm{~S}$
E. S W W

9. chem10b 16.4-4

When the proton in the COOH group in an amino acid is transferred to the NH_{2} group of that same amino acid molecule, a zwitterion is formed.

Student Response	Value Correct Answer

10. chem10b 16.1-6

What is the pH of an aqueous solution at $25.0^{\circ} \mathrm{C}$ in which $\left[\mathrm{OH}^{-}\right]$is 0.00250 M ?
A. +2.60
B. -2.60
C. +11.4
D. -11.4
E. -2.25

11. chem10b 16.1-32

The base-dissociation constant, K_{b}, for pyridine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, is The acid-dissociation constant, K_{a}, for the pyridinium ion, is \qquad .

Student Response

Correct Answer

A. 1.4×10^{-23}
B. 1.4×10^{-5}
C. 1.0×10^{-7}
D. 7.1×10^{-6}
E. 7.1×10^{-4}

Score: $1 / 1$
12. chem10b 16.1-39

The K_{a} for formic acid $\left(\mathrm{HCO}_{2} \mathrm{H}\right)$ is 1.8×10^{-4}. What is the pH of a 0.35 M aqueous solution of sodium formate $\left(\mathrm{NaHCO}_{2}\right)$?

Student Response

A. 4.2
B. 11
C. 8.6
D. 3.3
E. 5.4

1. chem10b 16.2-20

Which one of the following is a Br nsted-Lowry acid?

Student Response	
A. $\mathrm{CH}_{3} \mathrm{COOH}$	
B. HNO_{2}	
C. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}$	
D. HF	
E. all of the above	

2. chem10b 16.1-14

What is the pOH of a 0.0150 M solution of barium hydroxide?

Student Response

Correct Answer
A. 1.52
B. 12.5
C. 12.2
D. 1.82
E. 10.4
3. chem10b 16.4-2

In the reaction
$\mathrm{BF}_{3}+\mathrm{F}^{-} \rightarrow \mathrm{BF}_{4}^{-}$
BF_{3} acts as a Br nsted-Lowry acid.

Student Response Value Correct Answer
4. chem10b 16.1-3

The conjugate acid of HSO_{4}^{-}is

Student Response

A. $\mathrm{SO}_{4}{ }^{2-}$
B. HSO_{4}^{+}
C. $\mathrm{H}_{2} \mathrm{SO}_{4}$
D. $\mathrm{HSO}_{3}{ }^{+}$
E. H^{+}
5. chem10b 16.1-1

What is the conjugate acid of NH_{3} ?

Student Response

A. $\mathrm{NH}_{2}{ }^{+}$
B. NH_{3}
C. $\mathrm{NH}_{3}{ }^{+}$
D. $\mathrm{NH}_{4} \mathrm{OH}$
E. $\mathrm{NH}_{4}{ }^{+}$
6. chem10b 16.2-14

Nitric acid is a strong acid. This means that \qquad .

Student Response

A. HNO_{3} does not dissociate at all when it is dissolved in water
B. HNO_{3} produces a gaseous product when it is neutralized
C. HNO_{3} dissociates completely to $\mathrm{H}^{+}(\mathrm{aq})$ and $\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$ when it dissolves in water
D. aqueous solutions of HNO_{3} contain equal concentrations of $\mathrm{H}^{+}(\mathrm{aq})$ and $\mathrm{OH}^{-}(\mathrm{aq})$
E. HNO_{3} cannot be neutralized by a weak base

The K_{a} of hypochlorous acid (HClO) is 3.0×10^{-8} at 25 C . What is the $\%$ ionization of hypochlorous acid in a aqueous solution of HClO at 25 C

Student Response

Correct Answer

A. 1.4×10^{-3}
B. 4.5×10^{-8}
C. 0.14
D. 14
E. 2.1×10^{-5}
8. chem10b 16.2-10

Which solution below has the highest concentration of hydroxide ions?

Student Response

A. $\mathrm{pH}=7.00$
B. $\mathrm{pH}=7.93$
C. $\mathrm{pH}=3.21$
D. $\mathrm{pH}=12.6$
E. $\mathrm{pH}=9.82$

Score: 1/1
9. chem10b 16.1-39

The K_{a} for formic acid $\left(\mathrm{HCO}_{2} \mathrm{H}\right)$ is 1.8×10^{-4}. What is the pH of a 0.35 M aqueous solution of sodium formate $\left(\mathrm{NaHCO}_{2}\right)$?

Student Response

A. 5.4
B. 11
C. 3.3
D. 4.2
E. 8.6
10. chem10b 16.2-17

Which one of the following is the weakest acid?

Student Response

A. $\mathrm{HClO}\left(\mathrm{K}_{\mathrm{a}}=3.0 \times 10^{-8}\right)$
B. $\mathrm{HNO}_{2}\left(\mathrm{~K}_{\mathrm{a}}=4.5 \times 10^{-4}\right)$
C. $\mathrm{HF}\left(\mathrm{K}_{\mathrm{a}}=6.8 \times 10^{-4}\right)$
D. Acetic acid $\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$
E. $\mathrm{HCN}\left(\mathrm{K}_{\mathrm{a}}=4.9 \times 10^{-10}\right)$
11. chem10b 16.1-23

The acid-dissociation constants of sulfurous acid $\left(\mathrm{H}_{2} \mathrm{SO}_{3}\right)$ are and at $25.0^{\circ} \mathrm{C}$. Calculate the pH of a 0.163 M aqueous solution of sulfurous acid.

Student Response

Correct Answer
A. 1.8
B. 7.2
C. 4.5
D. 1.3
E. 1.4
12. chem10b 16.1-7

What is the pH of an aqueous solution at $25.0^{\circ} \mathrm{C}$ that contains $3.98 \times 10^{-9} \mathrm{M}$ hydronium ion?
A. 3.98
B. 9.00
C. 5.60
D. 8.40
E. 7.00

1. chem10b 16.1-15

An aqueous solution contains 0.100 M NaOH at $25.0^{\circ} \mathrm{C}$. The pH of the solution is
\qquad .

Student Response

Correct Answer
A. 0.100
B. 1.00
C. 13.0
D. 7.00
E. -1.00

2. chem10b 16.2-12

The hydride ion, H^{-}, is a stronger base than the hydroxide ion, OH^{-}. The product(s) of the reaction of hydride ion with water is/ are \qquad _.

Student Response

Correct Answer
A. $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$
B. no reaction occurs
C. $\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
D. $\mathrm{OH}^{-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})$
E. $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$

Score: 1/1

3. chem10b 16.1-34

K_{a} for HF is $7.0 \times 10^{-4} . \mathrm{K}_{\mathrm{b}}$ for the fluoride ion is \qquad .

Student Response

A. 1.4×10^{-11}
B. 7.0×10^{-4}
C. 2.0×10^{-8}
D. 1.4×10^{3}
E. 7.0×10^{-18}
4. chem10b 16.5-3

Calculate the molarity of hydroxide ion in an aqueous solution that has a pOH of 5.33 .

Student Response

Correct Answer
A. 4.7×10^{-6}
B. 8.7×10^{-14}
C. 2.1×10^{-9}
D. 5.3×10^{-14}
E. 8.67
5. chem10b 16.1-14

What is the pOH of a 0.0150 M solution of barium hydroxide?

Student Response
Correct Answer
A. 12.2
B. 1.82
C. 10.4
D. 12.5
E. 1.52

Score: 1/1
6. chem10b 16.1-16

HZ is a weak acid. An aqueous solution of HZ is prepared by dissolving 0.020 mol of HZ in sufficient water to yield 1.0 L of solution. The pH of the solution was 4.93 at $25.0^{\circ} \mathrm{C}$. The K_{a} of HZ is \qquad .

Student Response

A. 6.9×10^{-9}
B. 9.9×10^{-2}
C. 1.2×10^{-5}
D. 2.8×10^{-12}
E. 1.4×10^{-10}

7. chem10b 16.2-13

An aqueous solution contains 0.10 M NaOH . The solution is \qquad .

Student Response

A. neutral
B. very dilute
C. highly colored
D. basic
E. acidic
8. chem10b 16.2-34

A 0.1 M solution of \qquad has a pH of 7.0.

Student Response

A. NaNO_{3}
B. $\mathrm{NH}_{4} \mathrm{Cl}$
C. $\mathrm{Na}_{2} \mathrm{~S}$
D. NaF
E. KF
9. chem10b 16.1-25

The acid-dissociation constants of phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ are $\mathrm{K}_{\mathrm{a} 1}=7.5 \times 10^{-3}$, and
at What is the molar concentration of phosphate ion in a 2.5 M aqueous solution of phosphoric acid?
A. 8.2×10^{-9}
B. 0.13
C. 2.5×10^{-5}
D. 9.1×10^{-5}
E. 2.0×10^{-19}

Score: 1/1
10. chem10b 16.1-9

What is the concentration (in M) of hydronium ions in a solution at $25.0^{\circ} \mathrm{C}$ with $\mathrm{pH}=4.282$?

Student Response

Correct Answer
A. 4.28
B. 1.66×10^{4}
C. 1.92×10^{-10}
D. 5.22×10^{-5}
E. 9.71

11. chem10b 16.1-23

The acid-dissociation constants of sulfurous acid $\left(\mathrm{H}_{2} \mathrm{SO}_{3}\right)$ are 0.017 and $6.4 \times 10^{\wedge}-8$ at 25.0 ${ }^{\circ} \mathrm{C}$. Calculate the pH of a 0.163 M aqueous solution of sulfurous acid.

Student Response

A. 1.3
B. 4.5
C. 1.4
D. 7.2
E. 1.8
12. chem10b 16.1-18

A 0.15 M aqueous solution of the weak acid HA at $25.0^{\circ} \mathrm{C}$ has a pH of 5.35 . The value of K_{a} for HA is \qquad .
A. 1.4×10^{-10}
B. 3.3×10^{4}
C. 3.0×10^{-5}
D. 1.8×10^{-5}
E. 7.1×10^{-9}

1. chem10b 16.1-35

Calculate the pOH of a 0.0827 M aqueous sodium cyanide solution at $25.0^{\circ} \mathrm{C}$. K_{b} for CN^{-}is $4.9 \times 10^{\wedge}-10$.

Student Response

A. 8.8
B. 9.3
C. 1.1
D. 5.2
E. 10
2. chem10b 16.1-11

Calculate the pOH of a solution at $25.0^{\circ} \mathrm{C}$ that contains $1.94 \times 10^{-10} \mathrm{M}$ hydronium ions.

Student Response

A. 4.29
B. 1.94
C. 9.71
D. 14.0
E. 7.00
3. chem10b 16.2-5

The molar concentration of hydronium ion in pure water at $25^{\circ} \mathrm{C}$ is \qquad .

Student Response

A. 7.00
B. 0.00
C. 1.00
D. 1.0×10^{-14}
E. 1.0×10^{-7}
4. chem10b 16.4-1

An acid containing the COOH group is called a carbo-oxy acid.

Student Response Value Correct Answer
5. chem10b 16.1-17

The pH of a 0.55 M aqueous solution of hypobromous acid, HBrO , at $25.0^{\circ} \mathrm{C}$ is 4.48 . What is the value of K_{a} for HBrO ?

Student Response

Correct Answer
A. 1.1×10^{-9}
B. 2.0×10^{-9}
C. 3.3×10^{-5}
D. 6.0×10^{-5}
E. 3.0×10^{4}
6. chem10b 16.1-34
K_{a} for HF is $7.0 \times 10^{-4} . \mathrm{K}_{\mathrm{b}}$ for the fluoride ion is \qquad .
A. 1.4×10^{-11}
B. 1.4×10^{3}
C. 7.0×10^{-18}
D. 2.0×10^{-8}
E. 7.0×10^{-4}
7. chem10b 16.2-27

Using the data in the table, which of the conjugate bases below is the strongest base?
A. ClO^{-}
B. F^{-}
C. $\mathrm{CHO}_{2}{ }^{-}$
D. OAC^{-}
E. OAc and CHO_{2}^{-}
8. chem10b 16.2-10

Which solution below has the highest concentration of hydroxide ions?
A. $\mathrm{pH}=9.82$
B. $\mathrm{pH}=3.21$
C. $\mathrm{pH}=7.93$
D. $\mathrm{pH}=12.6$
E. $\mathrm{pH}=7.00$
9. chem10b 16.2-17

Which one of the following is the weakest acid?

Student Response

A. $\operatorname{HCN}\left(K_{a}=4.9 \times 10^{-10}\right)$
B. $\mathrm{HF}\left(\mathrm{K}_{\mathrm{a}}=6.8 \times 10^{-4}\right)$
C. $\mathrm{HClO}\left(\mathrm{K}_{\mathrm{a}}=3.0 \times 10^{-8}\right)$
D. $\mathrm{HNO}_{2}\left(\mathrm{~K}_{\mathrm{a}}=4.5 \times 10^{-4}\right)$
E. Acetic acid $\left(K_{a}=1.8 \times 10^{-5}\right)$
10. chem10b 16.2-3

A Bronsted-Lowry acid is defined as a substance that \qquad .

Student Response

Correct Answer
A. increases $\left[\mathrm{OH}^{-}\right.$] when placed in $\mathrm{H}_{2} \mathrm{O}$
B. increases $\left[\mathrm{H}^{+}\right.$] when placed in $\mathrm{H}_{2} \mathrm{O}$
C. acts as a proton donor
D. acts as a proton acceptor
E. decreases $\left[\mathrm{H}^{+}\right.$] when placed in $\mathrm{H}_{2} \mathrm{O}$
11. chem10b 16.1-22

The K_{a} of hydrazoic acid $\left(\mathrm{HN}_{3}\right)$ is 1.9×10^{-5} at $25.0^{\circ} \mathrm{C}$. What is the pH of a 0.35 M aqueous solution of HN3?

Student Response

Correct Answer
A. 2.4
B. 11
C. -2.4
D. 2.6
E. 5.2
12. chem10b 16.2-22

Classify the following compounds as weak acids (W) or strong acids (S):
nitrous acid hydrochloric acid hydrofluoric acid

Student Response

Correct Answer
A. S S S
B. $S \mathrm{~W} W$
C. W S W
D. W S S
E. W W W

