For help with these problems www.tutor-homework.com Be sure to mention the filename: Chemistry_Questions_0096

www.tutor-homework.com (for tutoring, homework help, or help with online classes)

1. chem10b 16.1-27

The pH of a 0.10 M solution of a weak base is 9.82. What is the K_b for this base?

Student Response	Correct Answer
A. 8.8×10^{-8}	
B. 2.1×10^{-4}	-
C. 6.6×10^{-4}	
D. 2.0×10^{-5}	
E. 4.3×10^{-8}	

2. chem10b 16.1-1

What is the conjugate acid of NH_3 ?

	Student Response	Correct Answer
A.	NH_4^+	
в.	NH ₂ ⁺	
C.	NH ₃	
D.	NH₄OH	
Ε.	NH ₃ ⁺	

3. chem10b 16.4-3

The simplest amino acid is glycine.

Student Response Value

e Correct Answer

Using the data in the table, which of the conjugate bases below is the strongest base?

Student Response	Correct Answer
A. CIO ⁻	
B. F ⁻	
C. CHO_2^-	
D. OAc ⁻	
E. OAc ⁻ and CHO ₂ ⁻	

5. chem10b 16.1-18

A 0.15 M aqueous solution of the weak acid HA at 25.0 °C has a pH of 5.35. The value of $K_{\rm a}$ for HA is _____.

Student Response	Correct Answer
A. 1.8×10^{-5}	
B. 1.4×10^{-10}	
C. 3.3×10^4	
D. 3.0×10^{-5}	
E. 7.1×10^{-9}	

6. chem10b 16.1-35

Calculate the pOH of a 0.0827 M aqueous sodium cyanide solution at 25.0 °C. K_b for CN⁻ is 49_{1} [1]

	Student Response	Correct Answer
A.	8.8	
в.	10	
C.	5.2	

D. 9.3		
E. 1.1		

What is the conjugate base of OH^{-2} ?

Student Response	Correct Answer
A. H ₃ O ⁺	
B. H ₂ O	
C. O ₂	
D. O ⁻	
E. O ²⁻	

8. chem10b 16.1-29

Determine the pH of a 0.35 M aqueous solution of CH_3NH_2 (methylamine). The K_b of methylamine is 4.4 \times 10 $^{-4}.$

	Student Response	Correct Answer
Α.	1.9	
в.	10	
C.	13	
D.	12	
E.	3.8	

9. chem10b 16.5-7

The acid-dissociation constant of hydrocyanic acid (HCN) at 25.0 °C is 4.9×10^{-10} . What is the pH of an aqueous solution of 0.080 M sodium cyanide (NaCN)?

Student Response	Correct Answer
A. 1.3×10^{-3}	
B. 11.11	

C. 7.8×10^{-12}	
D. 2.89	
E. 3.9×10^{-11}	

The pH of a 0.15 M aqueous solution of NaZ (the sodium salt of HZ) is 10.7. What is the $K_{\rm a}$ for HZ?

Student Response	Correct Answer
A. 3.3×10^{-8}	
B. 1.6×10^{-6}	
C. 8.9×10^{-4}	
D. 6.0×10^{-9}	
E. 1.3×10^{-12}	

11. chem10b 16.1-26

The acid-dissociation constant for chlorous acid, HClO₂, at 25.0 °C is 1.0 × 10⁻². Calculate the concentration of H⁺ if the initial concentration of acid is 0.10 M.

Student Response	Correct Answer
A. 2.7×10^{-2}	
B. 3.7×10^{-2}	
C. 3.2×10^{-2}	
D. 1.0×10^{-2}	
E. 1.0×10^{-3}	

12. chem10b 16.1-36

Determine the pH of a 0.15 M aqueous solution of KF. For hydrofluoric acid,

Student Response

A. 8.2	
B. 2.3	
C. 5.8	
D. 12	
E. 6.6	

What is the pH of a 0.0150 M aqueous solution of barium hydroxide?

	Student Response	Correct Answer
Α.	12.2	
в.	1.52	
C.	12.5	
D.	10.4	
E.	1.82	

14. chem10b 16.1-8

What is the pH of an aqueous solution at 25.0 °C that contains 3.98 \times 10⁻⁹ M hydroxide ion?

	Student Response	Correct Answer
A.	9.00	
в.	8.40	
C.	5.60	
D.	3.98	
E.	7.00	

15. chem10b 16.1-2

The conjugate base of HSO₄⁻ is

Student Response

Correct Answer

A. HSO ₄ ⁺	
B. H ₃ SO ₄ ⁺	
C. OH ⁻	
D. SO ₄ ²⁻	
E. H ₂ SO ₄	

Which of the following ions will act as a weak base in water?

	Student Response	Correct Answer
Α.	CI	
В.	NO ₃ -	
C.	OH-	
D.	CIO	
E.	None of the above will act as a weak base in water.	

17. chem10b 16.2-34

A 0.1 M solution of _____ has a pH of 7.0.

Student Response	Correct Answer
A. NaNO ₃	
B. KF	
C. Na ₂ S	
D. NaF	
E. NH ₄ Cl	

18. chem10b 16.1-11

Calculate the pOH of a solution at 25.0 °C that contains 1.94 \times 10 $^{\text{-10}}$ M hydronium ions.

Student Response

Correct Answer

A. 1.94	
B. 4.29	
C. 14.0	
D. 7.00	
E. 9.71	

The concentration of water in pure water is approximately ______ M.

	Student Response	Correct Answer
А.	18	
в.	55	
c.	83	
D.	0.100	
E.	100	

20. chem10b 16.2-9

In basic solution, _____.

Student Response	Correct Answer
A. $[H_3O^+] < [OH^-]$	
B. [OH ⁻] > 7.00	
C. $[H_3O^+] = 0 M$	
D. $[H_3O^+] = [OH^-]$	
E. $[H_3O^+] > [OH^-]$	

1. chem10b 16.2-34

A 0.1 M solution of _____ has a pH of 7.0.

Student Response	Correct Answer
A. NH₄CI	
B. Na ₂ S	
C. NaF	
D. NaNO ₃	
E. KF	
Score: 1/1	

The acid-dissociation constant at 25.0 °C for hypochlorous acid (HClO) is 3.0×10^{-8} . At equilibrium, the molarity of H_3O^+ in a 0.010 M solution of HClO is _____.

Student Response	Correct Answer
A. 5.8×10^{-10}	
B. 4.76	
C. 2.00	
D. 0.010	
E. 1.7×10^{-5}	
Score: 1/1	

3. chem10b 16.2-9

In basic solution, _____.

Student Response	Correct Answer
A. $[H_3O^+] = [OH^-]$	
B. [H ₃ O ⁺] < [OH [−]]	
C. $[H_3O^+] = 0 M$	
D. [OH ⁻] > 7.00	
E. $[H_3O^+] > [OH^-]$	

4. chem10b 16.1-33

The K_a for HCN is 4.9 \times 10 $^{-10}.$ What is the value of K_b for CN $\ddot{}$

Student Response	Correct Answer
A. 4.0×10^{-6}	
B. 2.0×10^9	
C. 4.9×10^4	
D. 4.9×10^{-24}	
E. 2.0×10^{-5}	

An aqueous solution contains 0.10 M NaOH. The solution is ______.

Student Response	Correct Answer
A. very dilute	
B. acidic	
C. highly colored	
D. basic	
E. neutral	

6. chem10b 16.1-37

Calculate the pH of 0.726 M anilinium hydrochloride ($C_6H_5NH_3CI$) solution in water, given that K_b for aniline is 3.83 × 10⁻⁴.

Student Response	Correct Answer
A. 12.2	
B. 5.36	
C. 8.64	
D. 12.4	
E. 1.77	

7. chem10b 16.1-16

HZ is a weak acid. An aqueous solution of HZ is prepared by dissolving 0.020 mol of HZ in sufficient water to yield 1.0 L of solution. The pH of the solution was 4.93 at 25.0 °C. The K_a of HZ is ______.

Student Response	Correct Answer
A. 2.8×10^{-12}	
B. 9.9×10^{-2}	
C. 1.4×10^{-10}	
D. 6.9×10^{-9}	
E. 1.2×10^{-5}	

Classify the following compounds as weak acids (W) or strong acids (S):

hypochlorous acid perchloric acid chloric acid

	Student Response	Correct Answer
A.	WSS	
в.	w w w	
C.	WSW	
D.	SSS	
E.	S W W	

9. chem10b 16.4-4

When the proton in the COOH group in an amino acid is transferred to the $\rm NH_2$ group of that same amino acid molecule, a zwitterion is formed.

Student Response	Value	Correct Answer

10. chem10b 16.1-6

What is the pH of an aqueous solution at 25.0 °C in which [OH⁻] is 0.00250 M?

Stude	ent Response	Correct Answer
A. +2.60)	

B2.60	
C. +11.4	
D11.4	
E2.25	

The base-dissociation constant, $K_{\mbox{\tiny b}}$, for $\mbox{\tiny p}$	yridine, C_5H_5N , is	The acid-dissociation
constant, K_a , for the pyridinium ion,	is	

Student Response	Correct Answer
A. 1.4×10^{-23}	
B. 1.4×10^{-5}	
C. 1.0×10^{-7}	
D. 7.1×10^{-6}	
E. 7.1×10^{-4}	
Score: 1/1	

12. chem10b 16.1-39

The K_a for formic acid (HCO₂H) is 1.8×10^{-4} . What is the pH of a 0.35 M aqueous solution of sodium formate (NaHCO₂)?

	Student Response	Correct Answer
А.	4.2	
в.	11	
C.	8.6	
D.	3.3	
Е.	5.4	

Which one of the following is a Br nsted-Lowry acid?

Student Response	Correct Answer
A. CH ₃ COOH	
B. HNO ₂	
C. (CH ₃) ₃ NH ⁺	
D. HF	
E. all of the above	

2. chem10b 16.1-14

What is the pOH of a 0.0150 M solution of barium hydroxide?

	Student Response	Correct Answer
Α.	1.52	
в.	12.5	
C.	12.2	
D.	1.82	
E.	10.4	

3. chem10b 16.4-2

In the reaction

 $BF_3 + F^- \rightarrow BF_4^-$

 BF_3 acts as a Br $\,$ nsted-Lowry acid.

Student Response	Value	Correct Answer

4. chem10b 16.1-3

The conjugate acid of HSO_4^- is

Student Response	Correct Answer
A. SO ₄ ²⁻	
B. HSO ₄ ⁺	
C. H ₂ SO ₄	
D. HSO ₃ ⁺	
E. H ⁺	

5. chem10b 16.1-1

What is the conjugate acid of NH_3 ?

	Student Response	Correct Answer
A.	NH ₂ ⁺	
в.	NH ₃	
C.	NH ₃ ⁺	
D.	NH₄OH	
E.	NH4 ⁺	

6. chem10b 16.2-14

Nitric acid is a strong acid. This means that ______.

	Student Response	Correct Answer
A.	HNO_3 does not dissociate at all when it is dissolved in water	
в.	HNO_3 produces a gaseous product when it is neutralized	
C.	$\rm HNO_3$ dissociates completely to $\rm H^+(aq)$ and $\rm NO_3^-(aq)$ when it dissolves in water	
D.	aqueous solutions of HNO_3 contain equal concentrations of $H^+(aq)$ and $OH^-(aq)$	
E.	HNO_3 cannot be neutralized by a weak base	

The K_a of hypochlorous acid (HClO) is 3.0 \times 10 $^{-8}$ at 25 C. What is the % ionization of

hypochlorous acid in a aqueous solution of HClO at 25 C

Student Response	Correct Answer
A. 1.4×10^{-3}	
B. 4.5×10^{-8}	
C. 0.14	
D. 14	
E. 2.1×10^{-5}	

8. chem10b 16.2-10

Which solution below has the highest concentration of hydroxide ions?

Student Response	Correct Answer
A. pH = 7.00	
B. pH = 7.93	
C. pH = 3.21	
D. pH = 12.6	
E. pH = 9.82	
Score: 1/1	

9. chem10b 16.1-39

The K_a for formic acid (HCO₂H) is 1.8×10^{-4} . What is the pH of a 0.35 M aqueous solution of sodium formate (NaHCO₂)?

	Student Response	C	Correct Answer
Α.	5.4		
в.	11		
C.	3.3		
D.	4.2		
E.	8.6		

Which one of the following is the weakest acid?

Student Response	Correct Answer
A. HCIO ($K_a = 3.0 \times 10^{-8}$)	
B. HNO ₂ (K _a = 4.5×10^{-4})	
C. HF ($K_a = 6.8 \times 10^{-4}$)	
D. Acetic acid (K _a = 1.8×10^{-5})	
E. HCN ($K_a = 4.9 \times 10^{-10}$)	

11. chem10b 16.1-23

The acid-dissociation constants of sulfurous acid (H_2SO_3) are and at 25.0 °C. Calculate the pH of a 0.163 M aqueous solution of sulfurous acid.

Student Response	Correct Answer
A. 1.8	
B. 7.2	
C. 4.5	
D. 1.3	
E. 1.4	

12. chem10b 16.1-7

What is the pH of an aqueous solution at 25.0 °C that contains 3.98×10^{-9} M hydronium ion?

	Student Response	Correct Answer
Α.	3.98	
в.	9.00	
C.	5.60	
D.	8.40	
E.	7.00	

An aqueous solution contains 0.100 M NaOH at 25.0 °C. The pH of the solution is

Student Response	Correct Answer
A. 0.100	
B. 1.00	
C. 13.0	
D. 7.00	
E1.00	

2. chem10b 16.2-12

The hydride ion, H^- , is a stronger base than the hydroxide ion, OH^- . The product(s) of the reaction of hydride ion with water is/ are _____.

Student Response	Correct Answer
A. H ₂ O ₂ (aq)	
B. no reaction occurs	
C. $OH^{-}(aq) + H_{2}(g)$	
D. $OH^{-}(aq) + 2H^{+}(aq)$	
E. H ₃ O ⁺ (aq)	
Score: 1/1	

3. chem10b 16.1-34

 K_a for HF is 7.0 \times 10 $^{-4}$. K_b for the fluoride ion is _____.

	Student Response	Correct Answer
A.	1.4×10^{-11}	
в.	7.0×10^{-4}	
C.	2.0×10^{-8}	

D. 1.4×10^3		
E. 7.0 × 10^{-18}		

Calculate the molarity of hydroxide ion in an aqueous solution that has a pOH of 5.33.

	Student Response	Correct Answer
Α.	4.7×10^{-6}	
В.	8.7×10^{-14}	
C.	2.1×10^{-9}	
D.	5.3×10^{-14}	
Ε.	8.67	

5. chem10b 16.1-14

What is the pOH of a 0.0150 M solution of barium hydroxide?

Student Response	Correct Answer
A. 12.2	
B. 1.82	
C. 10.4	
D. 12.5	
E. 1.52	
Score: 1/1	

6. chem10b 16.1-16

HZ is a weak acid. An aqueous solution of HZ is prepared by dissolving 0.020 mol of HZ in sufficient water to yield 1.0 L of solution. The pH of the solution was 4.93 at 25.0 °C. The K_a of HZ is ______.

Student Response	Correct Answer
A. 6.9×10^{-9}	
B. 9.9×10^{-2}	

C. 1.2×10^{-5}	
D. 2.8×10^{-12}	
E. 1.4×10^{-10}	

An aqueous solution contains 0.10 M NaOH. The solution is ______.

Student Response	Correct Answer
A. neutral	
B. very dilute	
C. highly colored	
D. basic	
E. acidic	

8. chem10b 16.2-34

A 0.1 M solution of _____ has a pH of 7.0.

Student Response	Correct Answer
A. NaNO ₃	
B. NH ₄ Cl	
C. Na ₂ S	
D. NaF	
E. KF	

9. chem10b 16.1-25

The acid-dissociation constants of phosphoric acid (H_3PO_4) are $K_{a1} = 7.5 \times 10^{-3}$, and

at What is the molar concentration of phosphate ion in a 2.5 M aqueous solution of phosphoric acid?

Student Response	Correct Answer
A. 8.2×10^{-9}	
B. 0.13	
C. 2.5×10^{-5}	
D. 9.1×10^{-5}	
E. 2.0×10^{-19}	
Score: 1/1	

What is the concentration (in M) of hydronium ions in a solution at 25.0 °C with pH = 4.282?

	Student Response	Correct Answer
Α.	4.28	
в.	1.66×10^4	
C.	1.92×10^{-10}	
D.	5.22×10^{-5}	
E.	9.71	

11. chem10b 16.1-23

The acid-dissociation constants of sulfurous acid (H_2SO_3) are 0.017 and 6.4x10^-8 at 25.0 °C. Calculate the pH of a 0.163 M aqueous solution of sulfurous acid.

	Student Response	Correct Answer
А.	1.3	
в.	4.5	
C.	1.4	
D.	7.2	
E.	1.8	

12. chem10b 16.1-18

A 0.15 M aqueous solution of the weak acid HA at 25.0 °C has a pH of 5.35. The value of $K_{\rm a}$ for HA is _____.

Student Response	Correct Answer
A. 1.4×10^{-10}	
B. 3.3×10^4	
C. 3.0×10^{-5}	
D. 1.8×10^{-5}	
E. 7.1×10^{-9}	

Calculate the pOH of a 0.0827 M aqueous sodium cyanide solution at 25.0 °C. $K_{\rm b}$ for $CN^{\rm -}$ is 4.9x10^-10.

	Student Response	Correct Answer
Α.	8.8	
в.	9.3	
C.	1.1	
D.	5.2	
E.	10	

2. chem10b 16.1-11

Calculate the pOH of a solution at 25.0 °C that contains 1.94×10^{-10} M hydronium ions.

	Student Response	Correct Answer
Α.	4.29	
в.	1.94	
C.	9.71	
D.	14.0	
E.	7.00	

The molar concentration of hydronium ion in pure water at 25°C is ______.

Student Response	Correct Answer
A. 7.00	
B. 0.00	
C. 1.00	
D. 1.0×10^{-14}	
E. 1.0×10^{-7}	

4. chem10b 16.4-1

An acid containing the COOH group is called a carbo-oxy acid.

Student Response	Value	Correct Answer

5. chem10b 16.1-17

The pH of a 0.55 M aqueous solution of hypobromous acid, HBrO, at 25.0 °C is 4.48. What is the value of $K_{\rm a}$ for HBrO?

Student Response	Correct Answer
A. 1.1×10^{-9}	
B. 2.0×10^{-9}	
C. 3.3×10^{-5}	
D. 6.0×10^{-5}	
E. 3.0×10^4	

6. chem10b 16.1-34

 K_a for HF is 7.0 \times $10^{-4}.~K_b$ for the fluoride ion is _____.

Student Response

A. 1.4×10^{-11}	
B. 1.4×10^3	
C. 7.0×10^{-18}	
D. 2.0×10^{-8}	
E. 7.0×10^{-4}	

Using the data in the table, which of the conjugate bases below is the strongest base?

	Student Response	Correct Answer
А.	CIO	
в.	F	
C.	CHO ₂	
D.	OAc	
E.	OAc ⁻ and CHO ₂ ⁻	

8. chem10b 16.2-10

Which solution below has the highest concentration of hydroxide ions?

Student Response	Correct Answer
A. pH = 9.82	
B. pH = 3.21	
C. pH = 7.93	
D. pH = 12.6	
E. pH = 7.00	

9. chem10b 16.2-17

Which one of the following is the weakest acid?

Student Response	Correct Answer
A. HCN ($K_a = 4.9 \times 10^{-10}$)	
B. HF ($K_a = 6.8 \times 10^{-4}$)	
C. HCIO ($K_a = 3.0 \times 10^{-8}$)	
D. HNO ₂ (K _a = 4.5×10^{-4})	
E. Acetic acid (K _a = 1.8×10^{-5})	

A Bronsted-Lowry acid is defined as a substance that ______.

Student Response	Correct Answer
A. increases $[OH^{-}]$ when placed in H_2O	
B. increases $[H^+]$ when placed in H_2O	·
C. acts as a proton donor	
D. acts as a proton acceptor	
E. decreases $[H^+]$ when placed in H_2O	

11. chem10b 16.1-22

The K_a of hydrazoic acid (HN_3) is 1.9 \times 10 $^{-5}$ at 25.0 °C. What is the pH of a 0.35 M aqueous solution of HN3?

	Student Response	Correct Answer
А.	2.4	
в.	11	
C.	-2.4	
D.	2.6	
E.	5.2	

Classify the following compounds as weak acids (W) or strong acids (S):

nitrous acid hydrochloric acid hydrofluoric acid

Student Response	Correct Answer
A. S S S	
B. S W W	
C. W S W	
D. WSS	
E. W W W	